8 research outputs found

    Chiral Symmetry Restoration at Finite Temperature in the Linear Sigma--Model

    Full text link
    The temperature behaviour of meson condensates and and is calculated in the SU(3)×SU(3)SU(3)\times SU(3)-linear sigma model. The couplings of the Lagrangian are fitted to the physical π,K,η,η′\pi,K,\eta,\eta' masses, the pion decay constant and a O+(I=0)O^+(I=0) scalar mass of mσ=1.5m_\sigma=1.5 GeV. The quartic terms of the mesonic interaction are converted to a quadratic term with the help of a Hubbard-Stratonovich transformation. Effective mass terms are generated this way, which are treated self-consistently to leading order of a 1/N1/N-expansion. We calculate the light and strange <sˉs><\bar s s>-quark condensates using PCAC relations between the meson masses and condensates. For a cut-off value of 1.5 GeV we find a first-order chiral transition at a critical temperature Tc∼161T_c\sim 161 MeV. At this temperature the spontaneously broken subgroup SU(2)×SU(2)SU(2)\times SU(2) is restored. Entropy density, energy density and pressure are calculated for temperatures up to and slightly above the critical temperature. To our surprise we find some indications for a reduced contribution from strange mesons for T≥TcT\geq T_c.Comment: 17 pages, HD--TVP--93--15. (3 figures - available on request

    Chiral Symmetry in Two-Color QCD at Finite Temperature

    Get PDF
    We study the chiral symmetry in two-color QCD with N massless flavors at finite temperature, using an effective theory. For the gauge group SU(2), the chiral symmetry is enlarged to SU(2N), which is then spontaneously broken to Sp(2N) at zero temperature. At finite temperature, and when the axial anomaly can be neglected, we find a first order phase transition occurring for two or more flavors. In the presence of instantons, the symmetry restoration unambiguously remains first order for three or more massless flavors. These results could be relevant for lattice studies of chiral symmetry at finite temperature and density.Comment: 10 pages, Revte

    New Universality Classes for Quantum Critical Behavior

    Get PDF
    We use the epsilon expansion to explore a new universality class of second order quantum phase transitions associated with a four-dimensional Yukawa field theory coupled to a traceless Hermitean matrix scalar field. We argue that this class includes four-fermi models in 2<D<42<D<4 dimensions with SU(NF)×U(N)SU(N_F)\times U(N) symmetry and a U(N) scalar, SU(NF)SU(N_F) iso-vector 4-fermi coupling. The epsilon expansion indicates that there is a second order phase transition for N≥N∗(NF)N\geq N^*(N_F), where N∗(NF)≃.27NFN^*(N_F)\simeq.27N_F if NF→∞N_F\to\infty.Comment: LaTeX, 9 pages, 1 tarred and uuencoded postscript figure. The new version contains information on the asymptotic dependence of the critical number of fermion species on $N_F

    Phase transitions in quantum chromodynamics

    Get PDF
    The current understanding of finite temperature phase transitions in QCD is reviewed. A critical discussion of refined phase transition criteria in numerical lattice simulations and of analytical tools going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical predictions about the order of the transitions are compared with possible experimental manifestations in heavy-ion collisions. Various places in phenomenological descriptions are pointed out, where more reliable data for QCD's equation of state would help in selecting the most realistic scenario among those proposed. Unanswered questions are raised about the relevance of calculations which assume thermodynamic equilibrium. Promising new approaches to implement nonequilibrium aspects in the thermodynamics of heavy-ion collisions are described.Comment: 156 pages, RevTex. Tables II,VIII,IX and Fig.s 1-38 are not included as postscript files. I would like to ask the requestors to copy the missing tables and figures from the corresponding journal-referenc
    corecore